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ABSTRACT

Recent methods in augmented reality allow simulating mutual light interactions between real and virtual objects.

These methods are able to embed virtual objects in a more sophisticated way than previous methods. However,

their main drawback is that they need a virtual representation of the real scene to be augmented in the form of

geometry and material properties. In the past, this representation had to be modeled in advance, which is very time

consuming and only allows for static scenes.

We propose a method that reconstructs the surrounding environment and estimates its Bidirectional Reflectance

Distribution Function (BRDF) properties at runtime without any preprocessing. By using the Microsoft Kinect sen-

sor and an optimized hybrid CPU & GPU-based BRDF estimation method, we are able to achieve interactive frame

rates. The proposed method was integrated into a differential instant radiosity rendering system to demonstrate its

feasibility.

Keywords
BRDF estimation, reconstruction, augmented reality

1 INTRODUCTION

Many mixed-reality applications require or at least

desire a consistent shading between virtual and real

objects. Examples are product presentations, virtual

prototyping, architectural and urban visualizations

and edutainment systems. Here virtual objects should

smoothly blend into the real environment and provide

a plausible illusion for users. They need to be rendered

in a way that makes them hard to distinguish from real

objects. Some recently published methods [14, 7]

consider the mutual light interaction between real and

virtual objects, so that they indirectly illuminate or

shadow each other.

Beside the geometry of the scene and the real lighting

conditions, the BRDFs of real objects are needed to

simulate these mutual shading effects. Acquiring this

data in a pre-processing step would diminish the dy-
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namic and interactive nature of mixed-reality systems,

and would also make it necessary to track the previ-

ously modeled movable real objects. In this paper, we

introduce a BRDF estimation method that runs at in-

teractive frame rates. It is based on real-time recon-

struction using the structural light scanner provided by

Microsoft’s Kinect sensor [11]. The real lighting con-

ditions are captured by a camera with a fish-eye lens

from which light sources are derived.

Our contribution is best characterized by the unique

features of our BRDF estimation approach, which are:

• It runs at interactive frame rates.

• It does not need any pre-processing.

• It utilizes a novel K-Means implementation exe-

cuted on the GPU.

2 RELATED WORK

BRDF estimation has a long history of research and a

variety of methods have been presented. Our approach

belongs to the class of image-based methods, which

are sometimes synonymously called Inverse Render-

ing. These methods try to fit parameters of an un-

derlying, sometimes rather simple, BRDF model, like
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the Phong [15] or Ward model [20], from images of a

scene. Yu et al. introduced Inverse Global Illumina-

tion [23], where reflectance properties are derived from

a sparse set of HDR images considering also indirect

illumination. The geometry is pre-modeled and par-

titioned into surfaces with similar materials. The di-

rect light sources must also be known. An optimization

algorithm then calculates diffuse and specular compo-

nents separately. Although the concept is sound and

forms the basis of newer algorithms, it needs a lot of

manual pre-processing. Sato et al. [17] presented a

method that also performs a reconstruction of the ob-

ject’s geometry from range images, which is then used

to estimate diffuse and specular parameters from the

same images.

Boivin and Gagalowicz [2] use a single LDR image in

addition to a geometric model including light sources.

Starting with a Lambertian model, they iteratively com-

pare renderings with the original image and consider

more and more complex reflectance models as long as

the difference is too large. Though their solution is scal-

able with regard to accuracy, it is still time consuming

and requires pre-processing. Mercier et al. [10] were

the first to present a fully automatic method to recover

the shape and reflectance properties of a single object

and the position of light sources from a set of cali-

brated images. For that purpose, the object and light

sources are fixed on a turntable, and photographs are

taken every 5 degrees. The geometry is approximated

by Shape From Silhouette (SFS) from Szeliski [19].

The method is very accurate and does not need any pre-

processing, but the special setup makes it unsuitable for

mixed-reality. Xu and Wallace [22] used a depth sen-

sor and a stereo intensity image to acquire an object’s

reflectance properties and parameters for multiple light

sources. Although using a depth map comes close to

our approach, their method is restricted to a single ob-

ject. Furthermore, calculating light source parameters

from intensity images introduces inaccuracies for flat

surfaces.

Zheng et al. [25] presented a solution that is similar to

that of Mercier et al. [10]. One big difference is that

they use measured lighting conditions instead of deriv-

ing this information from the images, which minimizes

the estimation error. They then apply the highlight re-

moval algorithm from Ortiz and Torres [13] before clus-

tering images into regions with similar diffuse materials

using K-Means. The parameters of the Ward model are

then obtained for each cluster by non-linear optimiza-

tion. Their algorithm is very robust, since after estimat-

ing specular factors, diffuse factors are re-estimated in

order to compensate for errors caused by wrong clus-

tering or inaccurate geometry.

Like Mercier’s method, the approach is based on a

controlled setup, which does not meet our require-

ments. This especially concerns reconstruction by SFS

and measurement of the light source. Their estimation

pipeline however is very efficient and so we based our

work on it. For example we also use an adaptation

of the highlight removal technique from Ortiz and

Torres [13] and we also use K-Means [9] for clustering.

Several efficient implementations of the K-Means algo-

rithm on the GPU already exist. Almost all of them

use a hybrid GPU/CPU approach, where the new clus-

ter centers in each iteration are either entirely or at least

partially calculated on the CPU [5, 8, 24, 21]. In all

of the aforementioned papers CUDA is used to perform

the calculations on the GPU.

To our knowledge there is only one method which was

proposed by Dhanasekaran and Rubin [4] where the

whole K-Means algorithm is done entirely on the GPU

eliminating the need of continuously copying data via

the PCIe bus. However, in contrast to Dhanasekaran

and Rubin’s work which relies on OpenCL, we use a

different approach that utilizes mipmaps to calculate the

center of each cluster using DirectX.

Generally speaking, all these previous image-based

BRDF estimation methods work off-line and have run-

ning times ranging from a couple of minutes to several

hours. Furthermore they are restricted to static scenes.

Mixed-reality applications are highly interactive and

dynamic according to Azuma’s definition [1]. Hence

our motivation was to design and develop a method

that runs at interactive frame rates and can thus handle

highly dynamic scenes.

3 OVERVIEW

Estimating material characteristics for mixed-reality

applications is a challenging task, due to several con-

straints. On top of it, is the time constraint, since the

applications have to be interactive. Then the observered

scenes usually exhibit a certain degree of dynamics and

materials that just appeared in the camera frustum need

to be estimated immediately. As described in the intro-

duction several methods for BRDF estimation exist but

all of them are designed for offline purposes. They all

try to get a very accurate BRDF estimation. In our case

this goal must be lowered to achieve interactive frame

rates. The resulting diffuse and specular reflectance

maps are used in a differential instant radiosity (DIR)

system where the goal is to get visually plausible

images instead of physically correct ones. Mapping

this idea to our BRDF estimation method, our goal is

to find BRDFs that emphasize the same visual cues to

the user as the real materials would do.

Our BRDF estimation algorithm is mainly influenced

by the ideas of Zheng et al. [25]. Their method was

designed to work offline and had thus different require-

ments. As an adaption we modified their approach

where necessary and made extensive use of the GPU
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to gain interactive frame rates. The presented method

can be divided into two main parts:

• Data acquisition: Capture data from the Microsoft

Kinect sensor and a fish-eye lens camera to obtain

color, geometry and lighting information.

• BRDF Estimation: Enhance the RGB input data and

estimate diffuse and specular material characteris-

tics.

Figure 1 illustrates the separate steps in the context of

the two main parts of the method. Section 4 describes

the data acquisition. Here normals are obtained with

the use of the depth map we get from the Kinect and

the lighting environment is approximated with the input

stream of the fish-eye lens camera. The BRDF estima-

tion is described in Section 5 where after intermediate

steps the final diffuse and specular reflectance param-

eters are estimated. The output of our method is inte-

grated into a DIR rendering system [7] and we directly

render the fully defined geometry (including material

characteristics) into a G-Buffer which stores the 3D po-

sition, the normal, the color and the material parameters

needed for Phong shading.

4 DATA ACQUISITION

The Microsoft Kinect sensor is a relatively cheap device

to capture a video and a depth stream simultaneously.

The resolution of both streams is 640× 480 pixels at a

frame rate of 30Hz. Surrounding objects can be cap-

tured in a range between 0.45 and 10 meters. Figure 2

shows the input data provided by the Kinect sensor. The

other source of input data is a IDS uEye camera with a

fish-eye lens attached to capture the incident illumina-

tion.

4.1 Normal Estimation

We implemented two methods for normal estimation.

The first one uses the Point Cloud Library (PCL) [16].

While the normals are of high quality, their compu-

tation takes too much time. The PCL functions need

223 milliseconds for one normal estimation step with a

smoothing factor of 10. The estimation is performed on

the CPU and therefore we implemented our own GPU

normal estimation method that exploits temporal coher-

ence (TC) between adjacent frames in a similar way as

done by Scherzer et al. [18].

Our normal estimation is based on two render passes.

The first pass performs subsampling and averaging of

the normals from the previous frame. Furthermore, a

curvature coefficient is calculated. The subsampling

causes a smoothing on the normals of the previous

frame. Let (i, j) be the row and the column of a given

pixel in the previous frame. The average normal is

Figure 1: Shows the main steps in the BRDF estima-

tion pipeline. Operations related to data acquisition are

shown in the blue box (Section 4). Steps belonging to

BRDF estimation and are shown in the green box (Sec-

tion 5).

Figure 2: The left image shows the video input stream.

The right image shows the normalized depth input

stream. Both streams have a resolution of 640× 480

with a frame rate of 30Hz.

then calculated by averaging over (i− 1, j), (i+ 1, j),
(i, j−1) and (i, j+1). Note that if no normal is avail-

able at a given pixel location, it will be discarded from

the calculation. The curvature coefficient is calculated

as follows:

curvH(i, j) = Ni−1, j ·Ni+1, j (1)

curvV (i, j) = Ni, j−1 ·Ni, j+1 (2)
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curv(i, j) = min [curvH(i, j),curvV (i, j)]128
(3)

where the dot is the dot product operator. Note that the

curvature coefficient goes to zero at sharp edges and to

one at flat areas. The average normal and the curvature

coefficient of the last frame are rendered to a render

target with half the dimension of the rendering window.

The second rendering pass consists of two steps. In the

first one a new normal is calculated from the point cloud

delivered by the Microsoft Kinect sensor. We look up

the 3D position pi, j at the current pixel (i, j) and two

neighboring positions in horizontal (i, j + 4) and ver-

tical (i+ 4, j) direction. A distance value of four pix-

els showed good smoothing characteristics while edges

were still preseverd. From these values, we can set up a

surface normal as follows:

di+4, j =
pi+4, j − pi, j

|pi+4, j − pi, j|
(4)

di, j+4 =
pi, j+4 − pi, j

|pi, j+4 − pi, j|
(5)

normali, j = di+4, j ×di, j+4 (6)

In the second step the information calculated by the

first rendering pass is used to calculate an old average

normal. First the lookup coordinates are calculated by

using reprojection. In this way the camera movement

from one frame to another can be canceled out. The cur-

vature coefficient at the current pixel steers the mipmap

level for the lookup of the previous normal. The new

and the previous normal vectors are linearly combined

depending on a confidence value calculated as follows:

cN = |Np ·N| (7)

c = cB ∗ cN +(1− cN) (8)

where Np is the previous averaged normal and N is the

new normal. cN is the confidence coefficient based on

the similarity of the previous and the new normal. The

resulting confidence is a linear blend between a base

confidence cB and 1, steered by cN . To deal with dis-

occlusions occurring during camera movement, we set

the confidence value c to zero if the depth difference

between the old frame and the new frame is larger than

0.1 meters. In this way, normals at dynamic elements

get updated faster.

While the quality of the normals is not that high com-

pared to the results of the PCL, our proposed method

runs on the GPU and is thus faster (see Section 6). Fur-

thermore note that the reprojection quality heavily de-

pends on the tracking quality.

4.2 Light Estimation

The incoming light position must be known in order to

be able to estimate a BRDF. The fish-eye camera cap-

tures the environment map and the DIR rendering sys-

tem creates a dome of virtual point light (VPL) sources

above the scene. We select a subset of these VPLs from

the dome and use them for BRDF estimation. The se-

lection criteria are that the VPLs have a high intensity

and that there is no other selected VPL within certain

distance.

5 BRDF ESTIMATION

Similar to Zheng et al. [25] highlights in the input im-

age are removed and afterwards inverse diffuse shad-

ing is applied. However, in their approach the resulting

buffer was just used for clustering. In contrast we also

use this buffer as a diffuse reflectance map to keep the

computation time low.

5.1 Highlight Removal

To estimate specular reflectance values similar colors

need to be clustered since they are assumed to belong to

the same material. However, specular highlights would

form a separate cluster due to saturation, which is not

desired. Our highlight removal is based on the work of

Ortiz and Torres [13]. Instead of transforming the cam-

era color image into the L1-Norm, we use the Hue Sat-

uration Intensity (HSI) color space. Highlights should

be detected at pixels where the color has high brightness

but low saturation. As thresholds we set the minimum

brightness to 0.9 and the maximum saturation to 0.1.

In a first pass, the highlight detection result is written

into a binary mask with a one where the brightness and

saturation criteria are met and a zero otherwise. Then

a morphological dilation with a disk (radius of 4 pix-

els) is performed. While Ortiz and Torres [13] perform

a Morphological Vectorial Opening by Reconstruction,

we use a rather simplistic reconstruction method. For

each pixel that is masked as a highlight, a new color

has to be found that ideally matches surrounding col-

ors. We do this by iterating through neighboring pixels

in an increasing circular manner until a pixel is found

that is not masked as belonging to a highlight anymore.

Then the color of the found pixel is used to substitute

the color of the masked pixel. In this way, all highlights

can be canceled out. Note that due to this highlight re-

moval process, bright and weakly saturated objects may

get misinterpreted as highlights. The results of the high-

light removal operation are shown in Figure 3.

Figure 3: The left image shows the highlight mask. In

a second step the masked pixels are filled as shown in

the image on the right.
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5.2 Diffuse Reflectance Estimation

After highlight removal we estimate the diffuse param-

eters per pixel by rephrasing the diffuse illumination

equation. We end up with the following formula for

the diffuse reflectance estimation kd :

kd =
I

∑
n
l=1 Il(N ·Ll)

, (9)

where I is the input intensity of the current pixel, Il the

intensity of the lth light source, Ll the direction towards

the lth light source and n is the number of lights that

are used for the BRDF estimation. Zheng et al. [25]

estimate the diffuse parameters at a later stage because

they used multiple RGB samples per vertex. We use

the resulting buffer as diffuse reflectance map and as in-

put for the clustering. The estimated diffuse reflectance

map is shown in Figure 4. In the ideal case the different

objects would have completely flat colors. However,

this is not the case due to several simplifications that

introduce consecutive errors in the pipeline. First, the

environmental light is represented by only a few virtual

point lights. Second, no shadows or indirect illumina-

tion are taken into account and third, the normal esti-

mation is not absolutely correct.

Figure 4: This image shows the estimated diffuse mate-

rial component kd . In the ideal case the objects would

look perfectly flat and no variations due to different nor-

mals and thus illumination would be visible.

5.3 Clustering

Pixels with similar RGB colors in the diffuse re-

flectance map are assumed to have the same material

and therefore need to be clustered. A novel K-Means

implementation that is executed on the GPU performs

the clustering. K-Means was introduced by Stuart P.

Lloyd [9] and it consists of the following steps:

1. Randomly choose k cluster centers.

2. Assign each data element to the nearest cluster cen-

ter using Euclidean distance.

3. Calculate new cluster centers by calculating the cen-

troid over all data elements assigned to a specific

cluster.

4. Repeat steps 2 & 3 until termination criteria are met.

Step 1: Initialize cluster centers: The resulting clus-

ters heavily depend on the initial values chosen for the

cluster centers. Thus if bad initial cluster centers are

chosen, it might take many iterations until convergence.

For each frame, we therefore use one to two different

initial cluster centers. The first set uses the cluster cen-

ters from the previous frame and if the stopping criteria

are met (see step 4) the next iteration is not executed

anymore. However, if they are not met, the second set

is executed with random cluster center values.

Step 2: Assign element to nearest cluster: Step two

is adapted slightly so that step 3 can be executed on

the GPU. Instead of just outputting the nearest cluster

id and the minimum distance, we need to render each

color pixel into multiple render targets. The idea is that

each cluster has its own render target and pixels ren-

dered into a given render target only belong to a certain

cluster. We used eight simultaneous render targets and

can handle six clusters each time a screen space pass

gets executed. The following information is stored on a

per-cluster basis for each pixel:

• The RGB color value

• The minimum distance to the nearest cluster center

• A binary flag that defines to which cluster the pixel

belongs

The RGB color and minimum distance can be stored in

one texture buffer with four floating point values. For

the binary flags of all six clusters, we used two textures

where every cluster gets assigned to one color channel.

Depending on the cluster id assigned to a given pixel

color, the color and distance information is only written

into the textures assigned to the specific cluster. All

other render target values are set to zero.

Step 3: Calculate new cluster centers: In step three

we need to calculate the average RGB value for each

cluster which is then used as a new cluster center. For

a texture T with a size of 2n × 2n, there are n mipmap

levels that can be created. The smallest mimap level

with a size of 1× 1 stores the average value of all data

in texture T. However, we only want the average RGB

color of those pixels that belong to a given cluster and

ignore those that were set to zero.The cluster center can

therefore be calculated using a combination of the two

lowest mipmap levels from the color texture and the bi-

nary flag texture as follows:

clusterc(TRGBD,T
∗) =

avg(TRGBD)

∑
n
i=0 ∑

n
j=0 T ∗

i, j

(10)

Journal of WSCG, Vol.20 51 http://www.wscg.eu 



where TRGBD is a cluster specific texture containing the

RGB color values and the distance value. T ∗ is the bi-

nary texture for the cluster having ones where pixels are

assigned to that cluster and zeros otherwise.

Step 4: Repeat steps 2 & 3: In the original K-means

method [9], the second and third steps are repeated un-

til no data element changes the cluster anymore. This

stopping criteria is too conservative for our needs. We

need a fast clustering algorithm and thus have lowered

the stopping criteria: First only a maximum number of

20 iterations are performed defining the upper bound

for the computation time. Second if the variance change

from one iteration to another drops below 10−4, no fur-

ther iterations are executed. By exploiting temporal co-

herence a low variance solution may be available after

the first iteration and no new cluster center set needs

to be processed. Note that the variance is calculated

in a similar way to the cluster centers by exploiting

mipmapping. As the squared distances for each pixel to

the cluster centers are already calculated in the shader,

the variance can be calculated nearly for free in step 2.

If the first run with the old cluster centers as initial

values does not converge, the second run with random

cluster centers gets executed. Then the cluster centers

with the lower variance value are used for BRDF esti-

mation. However, always using just the previous clus-

ter centers could lead to a local minimum for clustering

and there would be no way out to maybe find the global

one. For this reason, in every fifth frame, the second

iteration with random cluster centers will be executed

anyway. Figure 5 shows the resulting clusters after K-

Means is applied on the diffuse reflectance map.

Figure 5: This figure shows the resulting clusters after

K-Means is applied.

5.4 Specular Reflectance Estimation

One of the last steps needed in the BRDF estimation

pipeline is the estimation of the specular intensity ks and

specular power ns values per cluster. We assume white

highlights and thus ks is reduced to a scalar value. The

paramters are estimated similar as proposed by Zheng

et al. [25]. However, there are two main differences in

our method. First, the solver works partly on the GPU

and thus gains more speed than just a plain CPU im-

plementation. Second, the positions of the light sources

are not chosen to be fixed variables. The reason for

this is that the positions are evaluated using importance

sampling and thus can vary over time and furthermore

need not to be at the exact position where a small light

source is placed. However, the position of a light source

highly influences the position of the specular reflection

and therefore small variations of the initial positions are

allowed to the solver.

For the non-linear optimization, a Nelder-Mead algo-

rithm was used [12] with the following objective func-

tion evaluated on the GPU:

Fj = ∑
i

[

Ii −
n

∑
l=1

Ilkd(N ·Ll)+ Ilks(V ·Rl)
ns

]2

(11)

where i iterates over all pixel intensities Ii which are

related to cluster j. Il is the intensity of the lth light

source and kd is the diffuse intensity vector of a cluster,

which is set to the cluster center color. Note that for the

specular component estimation, kd is fixed and only the

light source positions as well as ks and ns can be var-

ied by the solver. N is the normal vector of the surface

and Rl the reflection vector of the lth light source. V

is a view vector pointing towards the camera. The re-

sult of the specular reflectance estimation is shown in

Figure 6. Figure 7 shows a simple Phong-illuminated

rendering on the left using the estimated kd , ks and ns

Phong illumination parameters. In this case, the same

VPLs are used for illumination that are also used to es-

timate the BRDFs. In the image on the right side a ren-

dering using DIR with an additional virtual pocket lamp

is shown. Note the yellow indirect illumination on the

real desk and on the virtual Buddha.

Figure 6: This image shows the result of the specular

component estimation.
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Figure 7: The left image shows a simple Phong render-

ing with the VPLs used for BRDF estimation. In the

right image a virtual pocket lamp illuminates the real

scene. Note the yellow color bleeding on the real desk

and on the virtual Buddha.

6 RESULTS

Our computer system consists of an Intel Core 2 Quad

CPU at 2.83 GHz and an NVIDIA GeForce GTX 580

with 1.5 GB of dedicated video memory. The software

is running on Windows 7 64-bit and implemented in C#

and DirectX 10. Cameras used in this scenario are the

Microsoft Kinect sensor and an IDS uEye camera to

capture the environment map.

6.1 Normal estimation

The two methods used for normal estimation differ

in quality and computation time. Figure 8 shows a

side-by-side comparison of the normal maps. The left

normal map is calculated with the PCL library and a

smoothing factor of 10. The average computation time

is 223 milliseconds. The right normal map is computed

with our proposed method in about 0.57 milliseconds.

The PCL based normal map has a lot of holes, shown in

grey color. In our method these holes are filled with the

normals of the neighboring pixels. Even though these

normals are not correct from a reconstruction point of

view, they reduce the visible artifacts a lot. Furthermore

note that our method produces sharper edges.

Figure 8: Comparison of the two implemented normal

estimation methods. Left: Normals estimated using the

PCL library [16] in 223 milliseconds. In grey areas no

normal could be estimated by the PCL. Right: Our pro-

posed method which takes 0.57 milliseconds.

6.2 K-Means clustering

We compared the proposed K-Means clustering imple-

mentation against the OpenCV library [3]. In the test

setup a data set of 640×480 3-vector elements needed

to be clustered. We ran both algorithms 5 times each

time with different initial cluster centers. The inter-

action count of each run was set to 20. Note that no

temporal coherence was exploited in order to get com-

parable results. The measured times include all the 5

runs and do not include the setup of the random data

elements. Table 1 shows the execution times in seconds

for 6 and 12 clusters.

Clusters OpenCV GPU K-Means

6 3.94s 0.33s

12 7.07s 0.44s

Table 1: Shows a comparison between the K-Means

implementation from OpenCV [3] and our GPU imple-

mentation. Both algorithms ran 5 times with 20 itera-

tions. Timings show the total execution of the 5 runs in

seconds.

Table 2 shows the average iteration count needed for the

first 50 frames to get below the variance change thresh-

old. The columns show the average number of itera-

tions for 6 clusters (6C) and for 12 clusters (12C). The

rows show if the cluster centers from the previous frame

were used (frame−1) or if the cluster centers where cho-

sen randomly (random). We set the maximum iteration

count to 30, which was never reached during this test.

Initials Avg. Iter., 6C Avg. Iter., 12C

random 9.00 11.47

frame−1 7.53 6.98

Table 2: Shows the average iteration count when

reusing the cluster centers from the previous frame or

taking random new ones.

6.3 Performance Analysis

The BRDF estimation pipeline has several steps. Ta-

ble 3 gives an overview on the time spent for each one.

In this setup, 6 clusters and 4 VPLs were used to ap-

proximate the BRDFs.

Stage Time in ms

Normal Estimation 0.57ms

Highlight Removal 0.94ms

Diffuse estimation 0.23ms

K-Means 39.08ms

Specular estimation 315.76ms

Total time: 356.58ms

Table 3: Shows the time spent on each pipeline stage.

It clearly shows that the specular estimation step con-

sumes by far most of the time. However, if it is possi-

ble not only to use a hybrid CPU / GPU version for the

optimization but a complete GPU solution, the perfor-

mance should increase a lot.

Two main parameters can be tweaked to get a better

performance for a given scenario. One parameter is the

number of materials that are estimated every frame. The
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second parameter is the number of virtual point lights

that are used to approximate the surrounding illumina-

tion. Table 4 shows the impact of different cluster and

VPL settings with a fixed maximum iteration count for

the specular estimation set to 50.

VPLs 6 Cluster (fps) 12 Cluster (fps)

1 3.82 2.41

8 2.23 1.30

128 1.70 1.01

256 0.99 0.59

Table 4: Shows the average fps with different VPL and

cluster settings.

We also investigated how the maximum iteration count

for the specular estimation solver reduces the total er-

ror. Interestingly, the change of the error was extremely

small regardless how large the value was set. We think

that this has to do with the large amount of pixels that

are available in a cluster. Compared to that the area of

a specular highlight is relatively small and thus correct

estimations will only have a small impact on the total

error.

Furthermore it turned out that the solver has difficulties

in finding appropriate values in certain cases. Some-

times there is simply no highlight due to a given VPL.

We therefore introduced a threshold value for a maxi-

mum error. If the error is too large, we set the specu-

lar intensity ks to zero. Another problem could be that

the solver just has one single point of view per frame

whereas Zheng et al. [25] used several photographs

to perform a specular estimation. Recently upcoming

techniques, however, promise to greatly improve the

problem of temporal coherent BRDF estimation (see

Section 8).

6.4 Critical Scenario

A critical scenario is shown in Figure 9 on the left. It

shows a blue notebook and a horse made from porcelain

placed on a wooden box. The light is mainly coming

from the direction of the spotlight partially visible on

the left side of the image, causing specular highlights on

the blue notebook envelope and the wooden box. The

number of clusters used in this scenario is six, and four

virtual point lights are used to estimate the surrounding

illumination. The average frame rate is 2.3 fps.

In this scenario, the clustering is not as distinct regard-

ing the objects compared to the first scenario. Due to

the highlights caused by the spotlight, the clustering

step creates different clusters for the same material as

shown in Figure 9 (right). Furthermore, the Kinect sen-

sor has troubles finding depth values at the white bor-

ders of the tracking marker, resulting in holes in the

estimations (see Figure 10 (left)). Figure 11 shows the

resulting diffuse (left) and specular (right) estimations.

The Phong-shaded result is shown in Figure 12.

Figure 9: The left image shows the video input captured

by the Kinect sensor. On the right side, the clustering

result is shown.

Figure 10: This figure shows the depth values acquired

by the Kinect sensor on the left. Note that it failed

to measure depth at the white borders of the track-

ing marker and the black fish-eye lense camera. On

the right side the normal estimation from our proposed

method is shown.

Figure 11: This figure shows the scene rendered with

just the diffuse estimation (left) and specular estimation

(right).

Figure 12: This figure shows the Phong-shaded result

combining the diffuse and specular estimations.

7 LIMITATIONS AND DISCUSSION

Some limitations of our method are imposed by the Mi-

crosoft Kinect sensor, which is a structural light scan-

ner. In general, depth values cannot be calculated when

the light pattern is not recognized by the system. This
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happens when objects are very glossy, reflective, trans-

parent or absorb too much of the infrared light. The

infrared pattern also vanishes in direct sunlight, mak-

ing the approach unsuitable for outdoor mixed-reality.

Furthermore, the border of curved objects is also often

missing from the depth map because the projected light

pattern is too distorted there.

Since bright pixels are assumed to be highlights due

to specular reflections, bright and weakly saturated ob-

jects may be misinterpreted as highlights. Furthermore,

shadows are not considered directly in the current im-

plementation. Pixels with a brightness value below a

certain threshold are simply discarded.

The K-Means clustering approach uses a variance value

to decide whether further iterations are needed or not.

However, there is no estimation of the optimal amount

of clusters right now. This number must be specified by

the user in advance and highly depends on the materials

available in the scene.

Although temporal coherence is exploited at several

stages in the pipeline, we do not continuously integrate

already-seen geometry data. This would be helpful as a

given point in the scene could be viewed under different

viewing angles, leading to a better BRDF estimation,

but could also lead to problems with moving objects.

Due to the real-time constraints several simplifications

are introduced. The environmental illumination is ap-

proximated using a few virtual point lights, the nor-

mals have a lower quality compared to the PCL library

and the clustering therefore also introduces some errors.

All these simplifications lower the quality of the final

BRDF estimation. However, since DIR mainly tries

to compute visually plausible results rather than being

physically correct, the estimated BRDFs should have a

sufficient quality for mixed-reality scenarios.

8 CONCLUSION AND FUTURE

WORK

We introduced a method to estimate the BRDFs of an

augmented scene at interactive frame rates. The method

does not need any precomputation, which makes it

suitable for mixed-reality applications. The Microsoft

Kinect sensor serves as a data input source to recon-

struct the surrounding environment in the form of ge-

ometry and material properties. First, normals are es-

timated using a screen-space method exploiting tempo-

ral coherence. In the next pipeline stage we propose

an adapted K-Means implementation that is specially

tailored towards BRDF estimation and fast execution

on the GPU. Temporal coherence is exploited here too,

which allows us to find clusters faster than with a con-

ventional implementation. The Phong parameter esti-

mation is performed using a hybrid CPU / GPU varia-

tion of the Nelder-Mead optimization algorithm. The

results demonstrate the feasibility of this method for

mixed-reality applications.

In the future, we plan to enhance the quality and speed

of this BRDF estimation method. It should be possi-

ble to gain a lot of speed by porting the Nelder-Mead

optimization method to the GPU. Furthermore, recent

techniques like KinectFusion [6] could greatly enhance

the quality of the BRDF estimation.
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