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ABSTRACT 
Methods for analyzing of 3-D mesh topology play an important role in computer graphics problems such as 

segmentation, correspondence, shape recognition, editing, and animation. We present a new approach for 

recognition, analysis, and classification of 3-D mesh-based objects. Here, we show how histogram descriptors 

based on the angles between vertices can be used for grouping similar shapes and for shape classification. Our 

method can be customized to classify objects of varying mesh complexity (i.e., level of detail) by changing the 

descriptor’s resolution parameter. We demonstrate the effectiveness of our method on a 3-D object database 

generated using shape grammars and a hybrid morphing algorithm. 
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1. INTRODUCTION 
Feature-based classification of three-dimensional-

meshed objects allows for efficient and robust editing 

of complex CAD models by effectively representing 

shapes using shape descriptors [Hof98, She04]. A 

current trend is to try to make 3-D shape descriptors 

available not only for applications such as shape 

retrieval [Fun03, Liu10] but also for shape matching 

[Bus05]. Unlike its 2-D domain counterparts, 3-D 

shape description of mesh-based solids remains an 

open problem both in terms of feasibility and 

accuracy. Since databases containing 3-D objects 

have become more accessible to users with no 

previous CAD/CAM software experience, the need to 

develop new methods for 3-D search becomes highly 

relevant [Fun03, Bus05].  

Usually, designers and manufacturing companies use 

semantic keywords, or meta-description to search for 

graphical 3-D objects in databases.  Given a small set 

of initial objects that resemble the intended target, 

these objects are iteratively shaped (morphed) to 

render the final shape that the artist had in mind. In 

this paper, we introduce an alternative approach to 

meshed-object description and recognition. Our 3-D 

mesh classification method works in two phases. In 

the first phase, we set up a database of objects with 

different topologies and create average angular 

histograms for each class of meshed objects (i.e., 

caves, clouds and architecture). In the second phase, 

we generate random objects for which baseline 

histograms are created. After that, we recognition is 

achieved by comparing the generated baseline 

histograms with those that were created in the first 

stage and then we can check if objects are recognized 

correctly.  Actually few independent research teams 

working on software development in project 

AIM@SHAPE [www]: MeshLab – editing of 

unstructured 3D triangular meshes, TriMesh2MT – 

convert mesh to multi-triangulation, AXEL – 

algebraic software-components for geometric 

modeling, COMREN – multi-resolution coding of 

mesh files. 

2. OTHER WORKS 
Methods for the analysis and classification of 3-D 

objects use a metric, which prescribes a distance 

function over the object’s surface. Tasks for which 

shape metrics play a key role include shape 

decomposition, shape signatures representation, and 

surface parameterization. Well-known surface 

metrics include the geodesic [Car76] and the 

isophotic [Pot04] distances, where the latter measures 

angles between surface normals; a combination of the 
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two is also common [Lai07]. Anisotropic geodesic 

metric based on the curvature tensor has also been 

considered for parametric surfaces [Seo08]. Another 

metric receiving recent attention is the diffusion 

distance [deGoe08], which accounts for the degree of 

connectedness between two surface points.  

Alternatively, one can derive a discrete distance 

function for mesh primitives by assigning attributes 

to primitives, defining edge weights between 

adjacent attributes, and finally computing distances 

over the shortest paths in the primal or dual graph of 

the mesh [Kat03].    

 

Interesting recent approaches include: a part-aware 

surface metrics [Mar11] (Fig. 1) and cubeness 

measure [Liu09] (Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another interesting approach is a Surflet-Pair-

Relation Histograms [Wah03] based on a novel four-

dimensional feature that describes the intrinsic 

geometrical relation between a pair of surflets, i.e., 

oriented surface points in 3D space. The statistical 

distribution of this feature as sampled from an 

object’s surface captures both local and global 

aspects of shape. Empirically learned histograms of 

the feature distribution are demonstrated as a 

compact and efficient representation of arbitrary 3D 

shapes. This representation allows for rapid 

classification of shapes based on a single histogram 

per object model, independent of translation and 

rotation. 

 

3. HISTOGRAMS 
Our method represents shapes using a histogram of 

inter-vertex angles. We assume that models consist 

of edges, each of them determined by two points (i.e., 

vertices). In addition, the vertices are assigned 

normal vectors. We begin to build the representation 

by creating a set of edges of all triangles of the 

model. Here, edges belonging to two triangles are 

added twice, but perhaps with different normal 

vectors. Then, a value in the interval [0, 1] is 

calculated for each edge. This value is the difference 

of the two angles between normal vectors and the 

line containing the vertices (Fig. 3). 

 

 

 

 

 

 

 

 

 

||

)(

12

12

VV

VV
e




                                    (1) 

)arccos( 11 nea                            (2) 

)arccos( 22 nea                            (3) 

12 aad                                    (4) 

v= d
2(p+1)

                                  (5) 

where: n1 and n2 are the normal vectors. For concave 

surfaces, this value belong to the interval [0,0.5). For 

convex surfaces, it lies the interval (0.5, 1].  

 

In the next step, a discrete histogram is created 

indicating the frequency of numbers lying in the 

given interval. This is done as follows – for each 

value from the set interval histogram is calculated 

according to the formula: 

Figure 3. Calculation of the angles between the vertices. 
 

 

 

Figure1. The last three columns show the 

distance histograms of each model, obtained 

using geodesic, D2 and part-aware distances. 

 

Figure 2. Each row presents the 

graphs GS(β) of all shapes from 

certain class (on the right), and two 

shapes whose GS(β) graphs differs 

essentially (on the left and in the 

middle). 
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1)*(  Rvfloori                         (6) 

where: R is the number of histogram intervals. 

 

Then the multiplicity of the i-th interval is 

incremented by one. After consider all values in the 

set, the histogram is normalized by dividing its 

compartments by the total number of edges. The 

normalization ensures that the sum of the ranges of 

the histogram equals to 1. For classification, it is 

necessary to prepare the histograms corresponding to 

a master object classes (Fig. 4.).  

Verification of the correctness of the model depends 

on the density of the grid. We obtained the best 

results for LD=10 (Fig. 5.).  

 

 

 

 

 

 

 

 

 

When density is large, the histogram is reduced to a 

single bar representing the most common angle. The 

user can control the histogram resolution (R) to 

improve object classification. Figure 5 shows a set of 

histograms of an object for varying resolutions. 

 

 

 

 

 

 

 

 

Creating a shape base 
One stage of classification is to create a wide shape 

base that will be used for shape recognition. 

 

From all objects selected to one class, we created 

average histograms for three main classes:  

architecture, clouds, and caves (Fig. 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our method produced different histograms for all of 

tested classes and in the next step it helps in 

recognition based on comparison of main classes 

with randomly generated objects using a calculation 

of Mean Squared Error (MSE). 

 

4. RECOGNITION 
We have tested our method using a database of 60 

objects consisting of 20 caves, 20 clouds, and 20 

architectural buildings. All objects were recognized 

correctly. Here, we are showing only a few selected 

objects from each class. Based on the average 

histograms, it was possible to recognize new objects 

(Figs. 7-9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Main histogram classes: (a) 

architecture, (b) clouds, and (c) caves. 

 

 

 

 

 

Figure 7. An example objects recognized as 

architecture. 

 

 

 

Figure 5. Varying resolutions for an object: (a) 

8, (b) 16, (c) 32, (d) 64. 

 

 

 

Figure 4. Level of detail (LD), from left LD=2, LD=5, 

LD=10. 
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5. SUMMARY 

In this article new approach for analysis and 

classification of meshed models was presented. The 

method was evaluated on a database containing 

shapes generated by hybrid of shape grammar and 

morphing.  3D-meshes were created from functional 

description of implicit objects. That technique did not 

produce predictable results because generated set of 

points and triangles dependent only on mesh density 

– sampling. 

The 3-D classification method based on histograms 

of the number of vertices and the angles between 

them. The method was able to group different models 

and then assign them to the pre-selected classes. The 

method achieved the best results for LD=10 but it can 

be useful for every values of the LD parameter. The 

metric can be used in identifying any three-

dimensional shapes with hard-surfaces. In future 

work, we plan to extend the database and improve 

selection of angles for more detailed objects having 

most angles between (-10 and 10 degree) for a better 

classification. 
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Figure 9. An example object recognized 

as a cave – view directly from editor. 

 

 

 

Figure 8. An example objects 

recognized as a clouds. 
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