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ABSTRACT 

Advanced 3D scanning technologies enable us to obtain dense and accurate surface sample point sets. From 

sufficiently dense sample point set, Crust algorithm, which is based on Voronoi diagram and its dual Delaunay 

triangulation, can reconstruct a triangle mesh that is topologically valid and convergent to the original surface. 

However, the algorithm is restricted in the practical application because of its long running time. Based on the 

fact that we do not need dense sample in featureless area for successful reconstruction, we propose a non-

uniformly sampling method to resample the input data set according to the local feature size before 

reconstruction. In this way, we increase the speed of reconstruction without losing the details we need. 
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1. INTRODUCTION 
With the development of 3D scanning 

technologies, we are now able to obtain dense, 

accurate samples of real objects’ surface, and 

modeling complex objects from samples becomes a 

significant recent trend in geometric modeling 

[Rusink00]. As the sample points only have the 

information of their 3D position, surface 

reconstruction, which is to build a piecewise linear 

surface approximating the original surface, is one 

essential problem of this modeling method.  

2. OVERVIEW 
In recent years, people have proposed a lot of 

algorithms for the problem. These algorithms can be 

roughly divided into two completely different kinds: 

approximation and interpolation. The first kind of 

approach generally estimates an approximating 

surface that passes close by the original sample 

points and its typical work is the algorithm presented 

by Hoppe et al [Hoppe96]. The second kind of 

approach normally uses Voronoi diagram and 

Delaunay triangulation to find the topological 

connection of the sample points. Different to the 

result of the first kind, the surface reconstructed by 

the second kind of approach passes through the 

original sample points. The α-shape of Edelsbrunner 

et al [Edels94], the crust of Amenta and Bern 

[Ament99][Ament98a][Ament98b] are both included 

in the second kind.  

Compare to other algorithms, the Crust algorithm 

is not only simple and direct in theory but also 

faithful to the original surface. In view of that the 

first kind of algorithms approximate rather than 

interpolate the original surface, they potentially do 

some low-pass filtering of the data. As we are 

considering the general surface reconstruction 

problem here, we actually use the same filter to get 

rid of types of noise. Apparently, it can’t have good 

result to every input data. So, the best way is to filter 

noise before reconstruction. That is to say we don’t 

consider noises in the input data. In this case, the 

result of the former kind algorithm is certainly more 

faithful than that of the latter kind. 

Unlike α-shape algorithm, Crust doesn’t need to 

choose any parameter, which is the major drawback 

of α-shape method. When the sample is sufficiently 

dense, it can automatically reconstruct a triangle 

mesh that is topologically valid and convergent to the 

original surface.  

However, Crust algorithm is too slow for many 

practical applications with current computing 

resource. Unless we can improve its speed, it can't be 

used it in large data set. In this paper, we present a 

non-uniformly sampling method to decrease the 

complexity of reconstruction. The down-sampled 

point set is dense in detailed areas and sparse in 

featureless areas. The reconstructed surface has the 

same topology of the original surface, and the details 

are maintained well.  

3. DEFINITIONS 
Our approach is built on the Crust algorithm 

introduced in [Ament99][Ament98a][Ament98b].  



This algorithm is based on the following definitions.  

Definition 1. The medial axis of a surface F is the 

closure of all centers of the spheres touching the 

surface in more than one point. 

Definition 2. To any point p on F, its local feature 

size )(pLFS is the Euclidean distance from p to the 

nearest point on medial axis.  

Definition 3. Let S be a sample set of F, if the 

Euclidean distance from any point p on F to the 

nearest sample point is within )( pLFSr ⋅ , then S is 

an r-sample of F. 

Definition 4. The positive pole of a sample s is the 

farthest vertex in Voronoi cell Vs, and its negative 

pole is the farthest vertex of Vs on the other side of 

the surface. 

Definition 5. Let S be a sufficiently dense sample 

point set from a surface F, the Crust of S is 

composed by the triangles one of whose 

circumsphere is empty both of the samples and the 

medial axis. 

It has been observed that an r-sample with 5.0=r  

is generally dense enough for Crust to correctly 

reconstruct the surface [Ament99]. 

4. ALGORITHM 
We assume that the input point set S is a 

sufficiently dense sample of a smooth surface. 

In Crust algorithm, we first compute the Voronoi 

diagram of the sample and select the poles in the 

Voronoi vertices to estimate the medial axis, then we 

compute the Delaunay triangulation of the combined 

point set of the samples and poles, in the end we 

choose the triangles whose vertices are all samples. 

From the process of the algorithm, we can see that 

the most time-wasting step of Crust algorithm is the 

computation of 3D Voronoi Diagram and Delaunay 

triangulation. Notice that the number of sample and 

poles is at most 3n, the time complexity of the 

algorithm is about )9()( 22 nOnO + , where n is the 

number of input points. Therefore, there are two 

ways to reduce the complexity: improve the 

efficiency of the computation of 3D Voronoi 

Diagram, or decrease the number of points. Voronoi 

diagram and its dual Delaunay triangulation have 

been studied widely since it was presented in 1936. It 

is difficult to improve efficiency of algorithm in 

advance. Thus we try the second way.  

Notice that the local feature size is big in 

featureless area and small in detailed area, Crust does 

not require dense sample everywhere. However, as 

the surface is unknown, sample device can’t know 

the local feature size of the area it is sampling, it is 

almost impossible to realize r-sample. If we do it 

manually, on the one hand the sampling process will 

be quite troublesome, on the other hand people can 

only evaluate how detail the surface is so that the 

sample can’t be very well coincident to the r-

sample’s requirement. In order to maintain the detail 

information in the reconstructed model, people 

usually desire the sample as dense as possible. The 

result is that the input point set is often with a great 

deal of points that are not necessary to correct 

reconstruction. If we discard these points, we can 

still correctly reconstruct the surface without losing 

details. In addition, the running time of 

reconstruction will be reduced. 

5.1. Local feature size  

As the sample is assumed dense enough, the poles 

are approximate to the medial axis. According to the 

definition of pole, the nearest pole of a sample s is its 

negative pole. Thus we can use the distance between 

them to approximate the sample’s local feature size. 

5.2. Non-uniformly down sampling 
If S is an r-sample of F and p is a point on F, then 

the distance between p and its nearest sample point s 

is within )( pLFSr ⋅ . Since every sample is also a 

point on F, the distance between s and s1 is no more 

than )(sLFSr ⋅ , where s1 is the nearest point of s in 

S.  

As show in figure 1, s is a point in S, v is the 

negative pole of s, s1 is another point in S that 

)(),( 1 sLFSrssd s ⋅= . Let s be the center and 

)(sLFSrs ⋅ be the radius, we have the ball B1. Let v 

be the center, )(sLFS be the radius, we have another 

ball B2. In accordance with the definition of local 

feature size, s1 is outside ball B2. Passing through s 

we make a plane L tangent to F. Because of the 

assumption that the surface is smooth, s1 and B2 must 

be located the same side of L. From the above 

discussion, we can see that F must be in the shaded 

region of figure 1 if it is in B1. 

 

Figure1.  If the surface is in the ball B1, it must be 

in the shaded region. 

There are two factors influencing local feature size 

– the curvature and proximity of the other parts of 

the surface[Ament98b]. However, the second factor 

can’t affect the local feature size in a small region, so 

we need not take into account the factor in a local 

area. That is to say, the local feature size is inversely 



proportional to the curvature in the shaded region 

when r is small enough.  

Let p be a point on the surface in the shaded 

region, and p' is the intersection of the line pv  and 

B2. As we all known, the more flat the surface is, the 

lower the curvature is. It is apparent that the 

curvature of point p is smaller than that of point p'. 

Since point p' and s are both on the ball B2, their 

curvatures are the same. Thus, we have 

)()( sLFSpLFS ≥ . In addition, on account of that p 

is in the shaded region, we have ),(),( 1ssdpsd ≤ . 

As a result, we get )(),( pLFSrpsd s ⋅≤ . As S 

satisfies the requirement for r-sample, rs is less than r. 

So, we have )(),( pLFSrpsd ⋅≤ .  

Then, we can make the following conclusion:  if 

we can find another point Ss ∈′  that satisfied 

equation )(),( sLFSrssd ⋅≤′ , S is an r-sample of a 

surface F. 

Therefore, if we delete all the points in the shaded 

area excepting the farthest one and s itself, the down-

sampled point set S ′  is still an r-sample of F In 

[Ament99] it is written that, an r-sample point set is 

sufficiently dense for correctly reconstruction if r is 

no more than 0.5. Thus, r should be less than 0.5 here. 

In fact, we obtain good result when 5.0=r . 

Down-sampling: 

1 Initial every point in S as unmarked 

2 For (i=0; i<n; i++){ 

3   if si is unmarked { 

4     0max =d ; 0=m ; 

5     for (j=0; j<n; j++) { 

6       if sj is unmarked { 

7         if )(),( iji sLFSrssd ⋅< { 

8           marked sj ; 

9           if 
max),( dssd ji >  update maxd  and m 

10 }} 

11 unmarked sm;} 

12 select all the unmarked points as the down-

sampled point set 

5. SURFACE RECONSTRUCTION 

In view of the fact that the poles of denser sample 

approximate the medial axis better than that of 

sparser one, we use the poles evaluated in the 

previous steps. Just like Crust algorithm, we combine 

the down-sampled point set and its corresponding 

poles to a new point set. The following steps are the 

same to Crust: we compute Delaunay triangulation 

for the new point set and select the triangles in which 

the three vertices are all sample points as the 

simplices of the reconstructed surface. 

5.1. Experimental Result 
We experiment with the two data sets ---- 

Mannequin and Stanford Bunny. Here, Voronoi 

diagram and Delaunay triangulation are implemented 

by the free qhull code [Qhull99] from Geometry 

center, and the parameter r is chosen as 0.5. The 

result is show in figure 2 and figure 3. 

5.2. The reduction of data 
Just as our expectation, the density of down 

sampled point set is varied according to the surface’s 

detail. The samples are still very dense in the region 

like the eyes, mouth and ears of mannequin. But in 

the featureless region, such as the jaw and forehead, 

they are very sparse compare with the original 

dataset. In the example of Stanford bunny the points 

are reduced relatively uniformly. It is because that 

the surface of bunny does not change very quickly.  

Form the result we also can see that the reduction 

of data is varied with the different dataset. It is relied 

on the density of the input points: the denser the 

input data set is, the more points we can delete. In the 

example of Mannequin, the size of new data set is 

reduced to about 1/3, however it is about 1/4 in 

Bunny.  

5.3. Complexity 
Now let us compare the complexity of the 

algorithm. The running time is dominated by the 

following steps: computing the Voronoi diagram of 

the input point set, down sampling, computing the 

Delaunay triangulation of the down-sampled point 

set. The core operation of down sampling is the 

computation of two points’ distance, and the amount 

of the operation is within newnn ∗− )1( , so the 

asymptotic complexity of down sampling is )( 2nO . 

Therefore, the total complexity of our approach is 

about )9()()( 222
newnOnOnO ++ . Comparing with 

using the input dataset directly, the complexity is 

decreased about )9()()9( 222
newnOnOnO −− , here 

nnnew 4
1≈  in the Bunny, nnnew 3

1≈  in Mannequin. 

In these two examples, the computation is both 

decreased more than 50%.  

5.4. Smooth rendering 
Since the points are sparse in featureless region, 

the triangles approximating the surface are 

comparatively large there. That makes the 

reconstructed surface look very coarse. As we know 

that the result of Gouraud shading look much 

smoother than that of flat shading. We try Gouraud 

shading to solve the problem. It is a very simple and 

effective method. We first calculate average normal 

of all the triangles sharing one vertex, following that 



we use the value as the normal of that vertex. Next 

we bi-linearly interpolate the normal of the vertices 

as the normal of the surface inside the triangle 

[Gouraud71]. From figure 2 (e) and figure 3 (e), we 

can see that the result of that method is satisfying --- 

the reconstructed surfaces are acceptable now. 

6. CONCLUSION 
We have presented a non-uniform down sampling 

method for dense and unorganized point set before 

surface reconstruction according to the local feature 

size. Guaranteeing the topological shape, we use a 

smaller point set to reconstruct the original surface. 

As the result, the speed of reconstruction is improved. 

This method also can be applied in mesh 

simplification. In fact we can use r-sample to define 

the level of detail for mesh. With the increasing of r, 

the mesh’s level of detail is decreasing. So we can 

realize mesh simplification by using this down-

sampling method to build an r-sample model with 

bigger r.  

As the triangles in the plat areas are relatively 

large, the whole model looks coarse. However, 

Gouraud shading can give us a tolerable visual effect 

when r is not very big. In addition, if we want a more 

elaborate visual effect, subdivision can be used to get 

smooth surface. 
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(a)           (b)   (c)                       (d)                 (e) 

Figure2: Dataset Mannequin (a) The Point cloud of original dataset. (12772 points) (b) The point cloud of 

down-sampled dataset. (4820 points) (c) The surface reconstructed from down-sampled dataset. (d) The 

surface of (c) after smoothed. (e) The surface reconstructed from original dataset.  

 
(a)             (b)     (c)         (d)   (e) 

Figure 3: Dataset Stanford bunny  (a) The Point cloud of original dataset. (35947 points) (b) The point 

cloud of down-sampled dataset. (8845 points) (c) The surface reconstructed from down-sampled dataset. 

(d) The surface of (c) after smoothed. (e) The surface reconstructed from original dataset. 


